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The velocity correlation function of a Brownian particle in a viscous compressible 
fluid is studied in the limit of very small compressibility. The main effect of com- 
pressibility is an initial rapid change of the particle mass from a real inertial mass 
to a virtual mass. 

The purpose of this article is to clarify the role of compressibility in the 
hydrodynamic theory of Brownian motion. 

When a spherical rigid body accelerates in an incompressible fluid, its mass m 
is augmented by an induced mass @f, where M is the mass of the displaced fluid. 
The body responds to an imposed force as if its mass were m* = m + &M, and m* 
is called the virtual mass of the body. In  a real fluid with non-vanishing com- 
pressibility, no matter how small, the body responds as if its mass were m and 
not m*. This lack of continuity in the limit of zero compressibility has led to much 
confusion in the hydrodynamic theory of Brownian motion. (The articles listed 
in the references provide a moderately complete history of the subject.) 

We analyse here the effects of a very small but non-vanishing compressibility 
on the velocity correlation function of a Brownian particle. The velocity 
correlation function is defined as 

4) = (v(O)v(t)) ,  (1) 

where v( t )  is the component of particle velocity in some fixed direction at  time t ,  
and ( ) denotes an equilibrium ensemble average. 

A brief summary of results will be given first, and then their justification will 
be discussed. 

The velocity correlation function starts with the initial value given by equi- 
partition, A(0)  = kT/m, where k is the Boltzmann constant and T is the tempera- 
ture. After a short time, A(t )  decays from kTlm to kT/m*. The initial decay time 
is of order ma/m*c, where a is the particle radius and c is the fluid sound velocity. 
The initial decay is due to acoustic damping of the particle velocity, and occurs 
even when the fluid is inviscid. In the absence of viscosity, A(t)  thereafter remains 
at kT/m*. But when the fluid is viscous, the initial decay is followed by a much 
slower decay from kT/m* to zero, just as if the fluid were incompressible. The 
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main effect of compressibility is to produce the rapid initial drop from kT/m to 
kT/m*. This behaviom was anticipated, on intuitive grounds, by several authors 
(Giterman & Gertsenshtein 1966; Berne 1972; Hynes 1972; Burgess 1973; Davis 
& Subramanian 1973). 

The starting point for the analysis of the velocity correlation function is an 
equation provided by linear response theory, 

( t )  dt - -s: dsK(s) A(t - s ) ,  

where K(s )  is a memory function, to be specified later. [Equations of this sort are 
discussed in useful reviews by Kubo (1966) and by Berne (1971).] This equation 
is solved easily by Laplace transforms. It is convenient to work in the complex 
frequency plane, so the Laplace transform of the memory function is defined as 

&(w) = sow dt eiWt K(t).  

On inverting the Laplace transform solution of this equation, one finds 

(3) 

(4) 

The contour of integration is above all singularities in the.complex w plane, and 
the resulting expression for A(t) is valid for all t > 0. 

The hydrodynamic theory of Brownian motion is based on a special approxi- 
mation to $ ( w ) .  Consider small amplitude oscillations of a sphere about a fixed 
point in a viscous compressible fluid, with frequency w. The velocity of the sphere 
is u(w),  and the frictional force on the sphere is P(w). The hydrodynamic friction 
coefficient 6(w)  is defined by 

The fundamental assumption of the hydrodynamic theory of Brownian motion is 
P(w) = - LJw) u ( w ) .  (5) 

k(0) _N go). (6) 

We are not concerned here with the validity of this assumption, but only with its 
consequences. Recent articles by Bedeaux & Mazur (1974) and by Mazur & 
Bedeaux (1974) provide some theoretical justification for (6). 

Frequency-dependent friction coefficients have been derived many times. The 
viscous incompressible fluid was treated first by Stokes in 1850, and his result 
may be found in various textbooks. The viscous compressible fluid was treated 
by Giterman & Gertsenshtein (1966; their result has a misprint); later and 
independently by Zwanzig & Bixon (1970; in a somewhat more general but less 
convenient form); by Chow & Hermans (1973b; this may be the most useful 
source- their expression for c(w)  is correct and easy to use) ; and by Burgess 
(1973; with several misprints). The friction coefficient for an inviscid compres- 
sible fluid (where the damping is due to acoustic radiation) may be found in 
various textbooks, or by taking the limit of zero viscosity in the more general 
expression. We use here only the two limiting cases of an inviscid compressible 
fluid and a viscous incompressible fluid, so we do not write down the general 
expression. 
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The mathematical problem a t  hand is to take the known expression for [ ( w )  
for a viscous compressible fluid, put it into the denominator of (4), and then 
evaluate the contour integral. This procedure, while perfectly feasible in principle, 
is quite difficult in practice because of the branch-point structure of the inte- 
grand. When the compressibility is very small, however, there is a convenient 
separation of time scales, which makes an approximate evaluation practical. 

One time scale, 
t, = afc, (7) 

is determined by the time required for a sound wave to traverse a sphere radius. 
Another time scale, 

t, = a2/v (8) 

(where v is the kinematic viscosity of the fluid), is determined by the character- 
istic lifetime of a transverse wave. The ratio of these two time scales 

t,ft, = cafv (9) 

is the dimensionless number a. When a is much larger than unity, the fluid is 
‘almost incompressible ’. 

To evaluate the velocity correlation function on the shorter time scale, we 
introduce the scaled variables 

7 = tlt,, x = Wt,, (10) 

so that 

When a is very large, and r is of the order of unity, we anticipate that interesting 
values of x are of order unity. Then the friction coefficient is approximately 

M x ( x  + i) 
C(xfte) = - t, x2+2ix-2 [l + O(a-3)]. 

The leading term is the friction coefficient for an inviscid compressible fluid. The 
remaining terms, of order a-4, will be neglected. 

In  this approximation, the contour integral may be evaluated by the Cauchy 
residue theorem. The integrand has three simple poles, located at  

I xo = 0, 

m* x --i-- ’- m 

The residues are found easily, and the velocity correlation function is 

A ( t )  = e-ixlt/tc 

+-A(0)  -+ (14) 
2m* {i (4m2-M2)f 
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This expression is valid for times of the order oft,. It is continuous in the limit 
t + 0 ,  so there is no difficulty about assigning the initial value A(0)  = kT/m. 
The poles x1 and x2 have negative imaginary parts. When 2m > M, the contribu- 
tion from these poles decays through exponentially damped oscillations. When 
2m < M, the oscillations are overdamped, and the decay is exponential. In  either 
case, the contribution from these poles decays to zero, and only the contribution 
from x,, remains. For times much longer than t, but still small compared with t,, 
the velocity correlation function takes on the value kT/m*. In  the complete 
absence of viscosity (so that tv+oo),  this result is exact. 

To evaluate the velocity correlation function on the longer time scale, we 
introduce the scaled variables 

r = t/t,, y = wt, 

so that 

When a is very large and r and y are of order unity, the 
approximately 

(15) 

(16) 

friction coefficient is 

(17) 
9M 
2tv 

[(y/t,)+ -[l-i(iy)*-+iy](l+O(a-2)). 

The leading term is the friction coefficient for a viscous incompressible fluid. 
The remaining terms, of order 

The resulting contour integral has been discussed by many authors, e.g. Case 
(1971), Hynes (1972) andMazo (1973). At long times, it decays as t-9. In  the limit 
t + 0, one finds the remarkable result that A(t)  approaches kT/m*. This is, of  
course, entirely consistent with the short-time calculation just described. Large 
t on the time scale t ,  are also small t on the time scale t,. However, if we had 
restricted our attention to an incompressible fluid from the beginning, the time 
scale t ,  would not have appeared anywhere. Then we would find an unpliysical 
lack of continuity, 

will be neglected. 

A(0)  = kT/m, A(O+) = kT/m*. (18) 

This is the source of confusion that was alluded to in the introduction. The con- 
fusion is eliminated by taking into account the effects of compressibility, and the 
resulting velocity correlation function is physically reasonable. 
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